tihe (4K) next (2K) email (1K) courses (1K) search (1K) sitemap (1K)
tonga (7K) edu (6K)
topline (1K)
 About
    History
    Goal of TIHE
    Accreditation
    Personnel
    Contact Info
    Location
    Web Cameras
    Photos

 Programs
    Community Courses
    Accounting
    Information Technology
    Agricultural Science
    Media & Journalism
    Tourism and Hospitality

 Resources
    TIHE's first newsletter
    ONLINE LEARNING
    Semester1 final exam Time-Table
     2019 Accounting Handbook
    Student Websites
    Student Resources
    Student FAQ
    TIHE Tutor Resources
    TIOE Tutor Resources
    Transcripts
    Search

 

TIHE Encyclopedia

How does the Internet work - by Rus Shuler @ Pomeroy IT Solutions
Taken from http://www.theshulers.com/whitepapers/internet_whitepaper.html

Where to Begin? Internet Addresses
Because the Internet is a global network of computers each computer connected to the Internet must have a unique address. Internet addresses are in the form nnn.nnn.nnn.nnn where nnn must be a number from 0 - 255. This address is known as an IP address. (IP stands for Internet Protocol; more on this later.)

The picture below illustrates two computers connected to the Internet; your computer with IP address 1.2.3.4 and another computer with IP address 5.6.7.8. The Internet is represented as an abstract object in-between. (As this paper progresses, the Internet portion of Diagram 1 will be explained and redrawn several times as the details of the Internet are exposed.)


Diagram 1

If you connect to the Internet through an Internet Service Provider (ISP), you are usually assigned a temporary IP address for the duration of your dial-in session. If you connect to the Internet from a local area network (LAN) your computer might have a permanent IP address or it might obtain a temporary one from a DHCP (Dynamic Host Configuration Protocol) server. In any case, if you are connected to the Internet, your computer has a unique IP address.

Networking Infrastructure
So now you know how packets travel from one computer to another over the Internet. But what's in-between? What actually makes up the Internet? Let's look at another diagram:


Diagram 3

Here we see Diagram 1 redrawn with more detail. The physical connection through the phone network to the Internet Service Provider might have been easy to guess, but beyond that might bear some explanation.

The ISP maintains a pool of modems for their dial-in customers. This is managed by some form of computer (usually a dedicated one) which controls data flow from the modem pool to a backbone or dedicated line router. This setup may be refered to as a port server, as it 'serves' access to the network. Billing and usage information is usually collected here as well.

After your packets traverse the phone network and your ISP's local equipment, they are routed onto the ISP's backbone or a backbone the ISP buys bandwidth from. From here the packets will usually journey through several routers and over several backbones, dedicated lines, and other networks until they find their destination, the computer with address 5.6.7.8. But wouldn't it would be nice if we knew the exact route our packets were taking over the Internet? As it turns out, there is a way...

Internet Infrastructure
The Internet backbone is made up of many large networks which interconnect with each other. These large networks are known as Network Service Providers or NSPs. Some of the large NSPs are UUNet, CerfNet, IBM, BBN Planet, SprintNet, PSINet, as well as others. These networks peer with each other to exchange packet traffic. Each NSP is required to connect to three Network Access Points or NAPs. At the NAPs, packet traffic may jump from one NSP's backbone to another NSP's backbone. NSPs also interconnect at Metropolitan Area Exchanges or MAEs. MAEs serve the same purpose as the NAPs but are privately owned. NAPs were the original Internet interconnect points. Both NAPs and MAEs are referred to as Internet Exchange Points or IXs. NSPs also sell bandwidth to smaller networks, such as ISPs and smaller bandwidth providers. Below is a picture showing this hierarchical infrastructure.


Diagram 4

This is not a true representation of an actual piece of the Internet. Diagram 4 is only meant to demonstrate how the NSPs could interconnect with each other and smaller ISPs. None of the physical network components are shown in Diagram 4 as they are in Diagram 3. This is because a single NSP's backbone infrastructure is a complex drawing by itself. Most NSPs publish maps of their network infrastructure on their web sites and can be found easily. To draw an actual map of the Internet would be nearly impossible due to it's size, complexity, and ever changing structure.

The Internet Routing Hierarchy
So how do packets find their way across the Internet? Does every computer connected to the Internet know where the other computers are? Do packets simply get 'broadcast' to every computer on the Internet? The answer to both the preceeding questions is 'no'. No computer knows where any of the other computers are, and packets do not get sent to every computer. The information used to get packets to their destinations are contained in routing tables kept by each router connected to the Internet.

Routers are packet switches. A router is usually connected between networks to route packets between them. Each router knows about it's sub-networks and which IP addresses they use. The router usually doesn't know what IP addresses are 'above' it. Examine Diagram 5 below. The black boxes connecting the backbones are routers. The larger NSP backbones at the top are connected at a NAP. Under them are several sub-networks, and under them, more sub-networks. At the bottom are two local area networks with computers attached.


Diagram 5

When a packet arrives at a router, the router examines the IP address put there by the IP protocol layer on the originating computer. The router checks it's routing table. If the network containing the IP address is found, the packet is sent to that network. If the network containing the IP address is not found, then the router sends the packet on a default route, usually up the backbone hierarchy to the next router. Hopefully the next router will know where to send the packet. If it does not, again the packet is routed upwards until it reaches a NSP backbone. The routers connected to the NSP backbones hold the largest routing tables and here the packet will be routed to the correct backbone, where it will begin its journey 'downward' through smaller and smaller networks until it finds it's destination.

Domain Names and Address Resolution
But what if you don't know the IP address of the computer you want to connect to? What if the you need to access a web server referred to as www.anothercomputer.com? How does your web browser know where on the Internet this computer lives? The answer to all these questions is the Domain Name Service or DNS. The DNS is a distributed database which keeps track of computer's names and their corresponding IP addresses on the Internet.

Many computers connected to the Internet host part of the DNS database and the software that allows others to access it. These computers are known as DNS servers. No DNS server contains the entire database; they only contain a subset of it. If a DNS server does not contain the domain name requested by another computer, the DNS server re-directs the requesting computer to another DNS server.


Diagram 6

The Domain Name Service is structured as a hierarchy similar to the IP routing hierarchy. The computer requesting a name resolution will be re-directed 'up' the hierarchy until a DNS server is found that can resolve the domain name in the request. Figure 6 illustrates a portion of the hierarchy. At the top of the tree are the domain roots. Some of the older, more common domains are seen near the top. What is not shown are the multitude of DNS servers around the world which form the rest of the hierarchy.

When an Internet connection is setup (e.g. for a LAN or Dial-Up Networking in Windows), one primary and one or more secondary DNS servers are usually specified as part of the installation. This way, any Internet applications that need domain name resolution will be able to function correctly. For example, when you enter a web address into your web browser, the browser first connects to your primary DNS server. After obtaining the IP address for the domain name you entered, the browser then connects to the target computer and requests the web page you wanted.

bottom (1K)
Enter Your Search:  Encyclopedia Search  Enter English Word:
     
  
bottom (1K)
Tongan Institute of Higher Education is part of the Distance Education and Communication
Center which operates under the umbrella of the Ministry of Education.
Copyright ® 2019

Choose Language: EnglishTongan
bottom (1K)